

january 2021 | version 1.0
lcrdm task group research software sustainability

© Jose Alfonso De Tomas Gargantilla /123RF.com

lcrdm

Research software
sustainability in the
Netherlands:
Current practices and
recommendations

The National Coordination Point Research Data
Management (lcrdm) is a national network of
experts on research data management (rdm) in
the Netherlands. The lcrdm connects policy and
daily practice. Within the lcrdm experts work
together to put rdm topics on the agenda that
ask for mutual national cooperation.

more information: www.lcrdm.nl

Researchers

Faculties

Research Leaders /

Institutions

D C C ’S

Funders

Content

1] Introduction & summary
Research software in the context of open science
The complexity of software reuse
Summary of the recommendations

2] Findings from the interviews
Motivation for sharing
Archiving
Licensing
Documentation
Dependencies
Recognition
What is needed from institutions
Conclusion

3] Recommendations
Create awareness
Develop policies
Stimulate considered use & reuse of software
Provide training & support
Adjust academic evaluation	
Allocate funding
Tables with recommendations

Appendices
Appendix 1. Background of this report
Appendix 2. Interview guideline
Appendix 3. A summary of the answers per question 	

2

3
3
4
4

5
5
6
6
7
7
8
8
8

9
9
10
10
11
11
12
12

16
16
18
20

1] Introduction & summary

This lcrdm report presents a survey of current research software practices. We hope
that the results will contribute to a profound discussion among all the stakeholders: what
is needed in terms of policies and conditions to implement sustainable research software
management in the Netherlands?

Research software has a pivotal role in enabling reproducible research and open science.
The findings and recommendations in this report are based on interviews with research
staff experienced in software development as well as an exploratory review of existing
national and international initiatives. Key topics in this report are academic recognition,
necessary skills and relevant support.

This report was created by the lcrdm task group Research Software Sustainability; please
refer to Appendix 1 Background of this report for more information.

Research software in the context of open science
In its most basic form, open science calls for making the primary outputs of research
publicly accessible with no or minimal restrictions. Research software is a key output of
contemporary research and it is increasingly considered – alongside publications and
research data – as one of the key pillars of open science (see Figure 1). While open access
and fair data have received considerable attention in the context of open science policy
in the Netherlands (see, for example, National Plan Open Science), this is not the case
for research software and software sustainability. This report provides an exploratory
assessment of topics and challenges in this area, resulting in a number of policy and
other recommendations.

Figure 1. Open source software as key
element of open science (Jomier, 2017)1 1] Open Science -- towards

reproducible research. J.
Jomier, Information Services
& Use 37 (2017) 361–367,
doi: 10.3233/isu-170846

3

O
pe

n Data Open Access

Open Source software

Open
Science

https://content.iospress.com/articles/information-services-and-use/isu846

The complexity of software reuse
When considering research software as research output, it is important to understand that
there are fundamental differences in relation to research data when it comes to preser-
vation and reuse. As put recently by Daniel Katz2, Chief Scientist at the us National Center
for Supercomputing Applications:

“Well-written source code can be preserved and read, which allows the reader to see
its intent and algorithms. However, using such source code can be more challenging, as
doing so often depends on the hardware and software environment, as well as software
dependencies. (...) In other words, we can preserve source code for reading, and we can
preserve executable software for re-execution, but we cannot simply preserve software
for reuse. For reuse, we need to sustain the software: to supply human effort that conti-
nually works on the software to adapt it as needed for changes in the environment and
dependencies.”

As Katz points out, the issues that arise in making software suitable for reuse are far more
complex, substantial and long-term than is the case for fair data. In other words, software
can only be made reusable when it is sustained, and developed with sustainability in mind.

Software is also fundamentally different from data when it comes to replication and reuse
of research results and valorisation in industry and education. Because research software
output is executable, it offers unique opportunities for researchers to build upon each
other’s work. As such, open research software allows research data and results to be
challenged, to become dynamic and interactive and to be reused and built upon faster
than ever before. We conclude that the lessons and best practices from the field of
research data management are not easily transferred to research software.

Summary of the recommendations
This report offers recommendations (see Chapter 3) for research performing organisa-
tions, research funders and individual researchers. These recommendations should
contribute to appropriate recognition of research software as academic output as well
as to an increase in software reuse and – overall – improved software sustainability in the
Netherlands. At a general level, the recommendations can be summarised as follows:

1. Create awareness
2. Develop policies
3. Stimulate considered use and reuse of software
4. Provide training & support
5. Adjust academic evaluation
6. Allocate funding

2] Open Science -- towards
reproducible research. J.
Jomier, Information Services
& Use 37 (2017) 361–367,
doi: 10.3233/isu-170846

4

https://danielskatzblog.wordpress.com/2020/10/20/fair-software-and-repositories/
https://danielskatzblog.wordpress.com/2020/10/20/fair-software-and-repositories/
https://danielskatzblog.wordpress.com/2020/10/20/fair-software-and-repositories/
https://danielskatzblog.wordpress.com/2020/10/20/fair-software-and-repositories/
https://danielskatzblog.wordpress.com/2020/10/20/fair-software-and-repositories/

2] Findings from the interviews

Members of the task group interviewed a total of 37 researchers and research software
engineers, with the goal of assessing their current practices for preserving and reusing
research software. In order to ensure coherence in the interview results, we developed an
interview guideline (see Appendix 2). Participants were selected based on their relevant
experience in research software development and experience in sharing their software.
The group of participants included researchers at all career stages, from full professors to
PhD candidates, working in a broad range of research areas, including the humanities, life
sciences, physics, engineering and computer sciences. See Appendix 3 for a summary of
the interview results. The findings are categorised according to seven topics, presented
below.

In interpreting the results, it should be noted that research software is multi-faceted and
is very diverse in terms of size, complexity and format. This implies that not all views,
opinions and practices pertain to the same idea or definition of ‘research software’. In its
most minimal form, software is a short script to validate certain data or to produce
figures for a paper. This type of software is often intended to be used only by the resear-
chers themselves or members of their research group. At the other end of the spectrum,
entire software packages are written to be used by a broader group, including inter-
national research consortia, commercial parties and non-academic stakeholders. In those
cases, software development practices are typically closer to professional standards.

Motivation for sharing
Most of the interviewees reported that they felt motivated to share their software, for
various reasons. Most commonly, personal benefits were mentioned: sharing code con-
tributes to establishing collaborations, increases the impact of the research, and brings
recognition and exposure to the researcher. Sharing software was also considered to
increase its quality, because other researchers may identify or even fix mistakes and be-
cause publishing code makes the publishing researcher more careful and diligent knowing
the software will be publicly available. Due to code being freely accessible and including
timestamps with its origin, sharing can also be a safeguard against plagiarism.

Academic principles were also given as a motivation to share software: making one’s
work open and reproducible is important for scientific and scholarly research to progress.
Many of the interviewees had a strong conviction that, because research is mostly publicly
funded, there is an obligation for it to be open and for researchers not to waste time by
reinventing the wheel. Reciprocity was also mentioned: if you make use of open source
software, you should contribute to the community. Some interviewees mentioned that it
is problematic for academia to become dependent on commercial parties for – possibly
expensive – software.

5

Besides intrinsic motivation, various external factors play a role, such as requirements
from the institution or funding agency, or because sharing is the de facto standard in cer-
tain academic fields. Notably, some interviewees did not feel they benefited much from
sharing their code: in fields where sharing is not the norm, the time spent on making it
reusable was not deemed worth it. Others mentioned that sharing software can be scary
“since everyone can see what you've done”.

Archiving
When asked if they archive their software, the majority of interviewees reported that they
do so or intend to do so. However, interviewees interpreted ‘archiving’ in different ways:
for some it meant “have it all on disk, and it is backed up”, or having it on home pages or
servers. For most, it meant making and keeping it available on GitHub (or alternatives), for
others, it meant depositing software in a trustworthy digital repository3 such as Zenodo
(sometimes in combination with GitHub), 4tu.ResearchData, Figshare, or institutional or
field-specific repositories.

In terms of making research software findable, the most common answers were: through
GitHub and through publications (in some cases citing the doi of the software). Dis-
semination through social media, mailing lists and other channels (e.g. blogs, curated lists)
were also mentioned. Several interviewees reported that they only archive software to
meet institutional or funder requirements, because they do not believe it will work in 10
years’ time. Some interviewees said that their answers and behaviour would depend on
the purpose of archiving the software (verification, reusability, sustainability).

Licensing
Just over half of the interviewees always use a license for their research software: mainly
open source licenses4 (e.g. bsd, gpl, Apache, mit, Eclipse and eupl). A few mentioned
Creative Commons licenses. The remaining interviewees do not always, or never, license
their work. Some said they have not given it much thought. Others just put their software
online (without a license) expecting that it can be reused without restrictions, without
realising that, as mentioned by another of the interviewees, “software must have a license,
or it cannot be reused”.

Of the researchers who do not always use a license, some indicated they have trouble
selecting the right license, and would welcome help from their institutions. Some men-
tioned that working with commercial partners or with multiple institutions, each bound to
different rules, were barriers when it came to the decision to apply a license to software
or knowing which license to choose. However, it was also mentioned that although com-
mercial parties had in the past been wary of open source licenses (especially those with a
share-alike clause), this is now changing and commercial partners are starting to see the
advantages of open source software.

3] Trustworthy Digital Repo-
sitories have the exclusive
mission of preservation for
the long term; they guaran-
tee the integrity of digital
objects, assign persistent
identifiers and have con-
tingency plans in case they
cease to exist.

4] This can be problema-
tic, as Creative Commons
themselves recommend
against using their licenses
for software: https://
creativecommons.org/
faq/#can-i-apply-a-cre-
ative-commons-licen-
se-to-software

6

Documentation
Almost all interviewees agreed that documenting the code they develop is very impor-
tant, particularly if there is an intention to make the code available for reuse, so that others
are able to understand and work with it. Almost all interviewees provide some form of
documentation, even if just for their own future reuse of the code. As one interviewee put
it, “You will thank yourself if you ever have to reuse your old software again.” However,
developing documentation is time-consuming according to the interviewees and these
efforts need to be offset against other competing priorities, such as writing papers and
carrying out data collection and analyses. If the expected target group for the software
is relatively small, the documentation provided is less extensive and may only include a
'Readme' file with the necessary libraries. At the other end of the spectrum, for software
projects spanning multiple decades, documentation may include a website with versions,
information on how to build it in different operating systems, lists of add-ons and related
packages, manuals, faqs, tutorials, community forums, mailing lists and wiki pages.

Dependencies
Interviewees reported that reusing other people’s code in a project can save a lot of time
and effort, but its benefits depend on the quality and usability of the software. For exam-
ple, when necessary dependencies are not available, software may not give the same
results, or not work at all. The responsibility for this lies with the author of the software.
Interviewees explained that, at a minimum, they list the necessary libraries in the docu-
mentation (Readme and environment files, wiki pages, etc.). Some use package managers,
or integrate dependency management into their pipeline. Source code of dependencies
might also be incorporated directly into their own project. Containerisation (e.g. by using
Docker) was also mentioned, where the entire computing environment is stored else-
where and can be run later.

There is also a risk that software projects break down. When software projects depend
on many libraries and programs which themselves depend on other code, there is an in-
creased chance that somewhere in the chain something will break. Code may be moved,
updated (and no longer be compatible) or be removed altogether. Because of new ver-
sions or security issues, platforms may cease to operate or operating systems may
become outdated. Looking at longer timescales, hardware will become outdated.

For these reasons some interviewees mentioned that they try to minimize their depen-
dencies, and use only old, stable, well-known libraries. Some researchers for whom soft-
ware development is more common reported that they actively maintain their projects.
For them, factors that play a role in deciding to use someone else’s code are: maintenance
(is the software actively maintained?), communication (how to get in touch with the
developers) and community (what are the options for getting involved in the developers’
community?). Some respondents constantly check if dependencies still work using
continuous integration and continuous delivery (ci/cd).

7

Recognition
Many interviewees acknowledged that they felt hindered by a lack of recognition and
appreciation for spending time and effort on making software reusable. This includes time
spent documenting, keeping software ‘alive’, and organising the community. These activi-
ties are currently not explicitly recognised in formal research assessment and researcher
evaluations. Researchers therefore struggle to find time for tasks related to software sus-
tainability, which limits the potential for software reuse, leading to an unceasing growth
of unmaintained software. A few researchers felt that there is a direct trade-off between
writing papers and writing reusable software. One interviewee expressed a wish to spend
more time on reusable software and frustration at being evaluated exclusively on publi-
cations. Others mentioned was that academic publishing does not naturally sync with
how software development works, and thus much time and effort goes into retrofitting
projects into traditionally structured research papers. Improving the practice of proper
software citation as well as help in demonstrating the use and reuse of one’s research soft-
ware would contribute to better recognition of developing software as part of standard
academic practice.

What is needed from institutions
When asked what help was needed from their institutions, the most popular answers
were:
– Specialised training and education for students and staff.
– Support from those with research software engineering expertise
– Help with choosing licenses

Some also mentioned the need for structural funding for much used platforms, such as
GitHub and Zenodo; a wish for institutional presence at GitHub; and for institutional
libraries to make the connection between the open data movement and open source
software.

Conclusion
The researchers we interviewed were selected for their experience with applying open
science practices to research software. Although they were highly motivated, they still
struggled to allocate sufficient time to do so thoroughly enough and to their preferred
standards. Many reported feeling a lack of recognition for such work because it is not a
primary research product that counts towards formal evaluations. On the topics of licen-
sing and archiving there seems to be much to be gained. Reuse of software was seen as
a great time saver by some researchers. Other researchers expressed caution in reusing
software, because problems may occur in chains of dependencies. Benefits put forward
by the researchers who were interviewed included an increase in collaborations, impact,
exposure and software quality.

8

3] Recommendations

There is increasing recognition of the crucial role software plays in contemporary re-
search5. Until recently, however, most attention on the institutional and policy level has
been devoted to developing improvements in creating open access policies and promo-
ting fair and open data. Specific policies and frameworks to stimulate the development,
use and recognition of sustainable research software seem to be in their infancy.

This report provides a set of recommendations aimed at improving the practice of
sustainable research software in the Netherlands. These recommendations are based on
findings from interviews conducted with academic staff actively involved in research
software development and expert input from the task group.

The interviewees helped us to gain an understanding of the conditions under which re-
searchers in the Netherlands develop research software that is suitable for reuse. The
issues brought up in these interviews are, however, not unique to the Netherlands. Similar
topics have been discussed extensively over the past few years in various projects and
tasks groups, both in national and international settings. These discussions have led to
recommendations, policies and guidelines which, to a large extent, are also applicable to
the Netherlands. Given the international nature of research, it makes sense to join and/
or adopt these international efforts on software sustainability and archiving. The recom-
mendations presented here, therefore, also take into account a review of other relevant
initiatives.

We have summarized the recommendations in a set of tables. These recommendations
are tailored to the different stakeholders. To effectively drive the desired change, collabo-
rative actions are needed on several levels within the academic landscape as a whole.

The recommendations are set out in terms of six themes: awareness, policies, academic
evaluation, reuse of software, training & support, academic evaluation and allocating
funds.

Create awareness
A key step in stimulating sustainable research software is to raise awareness among re-
searchers of the concept of software sustainability and associated best practices. This
can be achieved by highlighting stories of successfully reused research software and de-
monstrating its advantages. Research institutions can benefit from and draw on relevant
insights, developments and recommendations from national and international initiatives
such as the fair Software6 website (fair-software.eu), relevant rda initiatives (e.g. rda
group for fair software), the Research Software Alliance (Resa), articles7 and the national
community for research software engineers (nl-rse)8. National organisations involved in
digital research infrastructure (such as the eScience Center, dans and surf) should take
on a more active and visible role in supporting the research institutions in their ambitions
to develop relevant and high-quality support capacity within research groups and in digital
competence centres.

5] ‘Recognising the
Importance of Software
in Research – Research
Software Engineers (rses),
a uk Example’, Open Sci-
ence Monitor Case Study,
European Commission
2019, https://ec.europa.
eu/info/sites/info/files/
research_and_innovation/
importance_of_software_in_
research.pdf

6] The Netherlands
eScience Center and dans:
‘Five recommendations
for fair software’: https://
fair-software.nl/
7] Lamprecht, Anna-Lena et
al. ‘Towards fair Principles
for Research Software’.
1 Jan. 2020 : 37 – 59.
https://content.iospress.
com/articles/data-science/
ds190026
https://www.iospress.nl/
ios_news/towards-fair-prin-
ciples-for-research-soft-
ware/
8] nl-rse (https://nl-rse.
org/) represents the
community of Research
Software Engineers (rses)
from Dutch universities,
knowledge institutes, com-
panies and other relevant
organisations.

9

https://nl-rse.org/
https://nl-rse.org/

Develop policies
Another important step research funders and research institutions can take towards pro-
moting sustainable research software is to develop and implement software sustainability
policies with a focus on open science. For example, the eosc Scholarly Infrastructure
for Research Software Task Force Report9 suggests the following: “all research software
should be made available under an Open Source license by default, and all deviations from
this default practice should be properly motivated.”

It is important to note that not all software is equal, and policies should reflect this. Soft-
ware is archived or made publicly available with different aims. Requirements and policies
should therefore be made suitable for reproducibility purposes as well as for software
sustainability.

Stimulate considered use & reuse of software
Ideally, research software should be able to be reused, adopted and extended by the aca-
demic community. By doing so, it would prevent researchers from developing research
software that may already exist. However, not all software is stable or suitable enough to
be reused and maintained. Some software will only be preserved for reproducing rese-
arch. Researchers should therefore carefully consider which of the research software they
develop is suitable for reuse by others, and which part may simply be shared or archived.

Group leaders can stimulate good practices by encouraging researchers to develop soft-
ware with reusability in mind. Public accessibility and good documentation, in particular,
are crucial components for enabling software reuse. Funders can prime researchers for
both reusing and developing reusable software by addressing this explicitly in funding
applications and required data management plans, or they might consider asking for a
separate software management plan.

While the creation of documentation may be perceived as time consuming, the use of
automated documentation generators (such as sphinx or roxygen) can optimize the time
spent on this. Documentation is not only crucial for reuse, but it also supports future de-
velopment of the code by its own authors, as it explicitly provides important information
about the code's functionality that may be forgotten as time passes.

Sharing code and software can help to increase researchers’ visibility. More than most
activities, developing software lends itself to an open workflow through the use of social
software development platforms such as GitHub. This has the potential to attract collabo-
rators and improve the work at an early stage. Research groups and institutions can sti-
mulate the use of software sharing platforms, for example by requiring them in all coding
projects. Having an institutional presence on these platforms further helps the visibility of
the institution, connects its researchers and encourages the use of the platform.
A further step institutions can take is to organise the formal registration of research soft-
ware as scholarly output in research information systems. If research software is consi-
dered as primary research output, it should be assigned a persistent identifier (pid) and be
registered in the same manner as publications.

9] The European Open
Science Cloud (eosc)
Executive Board has set
up a Task Force to provide
recommendations on the
policies and infrastruc-
tures needed to support
research software as part
of eosc. The First Draft of
this report is available via
https://docs.google.com/
document/d/1yObrcr-
7coqctpjMdg-rNenRZ-
7Zeuz-u0iyvdpprk598/
edit#.

10

https://docs.google.com/document/d/1yObRCR7COQctpjMdg-rNenRZ7ZeUZ-u0iyvdpPRK598/edit
https://docs.google.com/document/d/1yObRCR7COQctpjMdg-rNenRZ7ZeUZ-u0iyvdpPRK598/edit
https://docs.google.com/document/d/1yObRCR7COQctpjMdg-rNenRZ7ZeUZ-u0iyvdpPRK598/edit
https://docs.google.com/document/d/1yObRCR7COQctpjMdg-rNenRZ7ZeUZ-u0iyvdpPRK598/edit
https://docs.google.com/document/d/1yObRCR7COQctpjMdg-rNenRZ7ZeUZ-u0iyvdpPRK598/edit

Provide training & support
Although the researchers we interviewed were generally well versed in sustainable soft-
ware best practices, many reported that they struggled with licensing choices, with some
expressing the need for more support from their institutions. Software licenses are a
notoriously tricky subject, but an appropriate open source license is a crucial element of
re-usable research software. Research institutions are recommended to develop relevant
and sufficient capacity to help resolve licensing conflicts, e.g. between dependencies or
between contrasting wishes of different parties in a consortium.

Some interviewees also commented more generally about the need for support in aca-
demia. Some of them indicated that specific and more training is needed, starting with
students at the ba and ma level. The standard curriculum should be expanded, not in the
least for Master’s degree programmes in less digitally oriented disciplines (such as langua-
ges, criminology or archaeology), as the use of software will only increase.

Researchers need to be trained on various best practices in developing sustainable soft-
ware. Initiatives and resources such as the Carpentries10, CodeRefinery, the Turing Way11,
and training given by the Netherlands eScience Center can be taken advantage of here,
both by researchers themselves, and by training coordinators at research institutes.
Guidelines for sustainable software development should be present in the curriculum
and form the basis of programming work in a research group.

Finally, including research software engineers in research teams enables more efficient
use of research software development in terms of cost and time (through continued
maintenance, solid documentation and outreach via active web-based documentation,
for example). Research software engineers can elevate the process by dealing with more
technically challenging issues such as dependency management. They can either be hired
by research groups or on an institutional level.

Adjust academic evaluation
Academics are still mostly evaluated on the basis of their publication record. Recently,
however, there has been a clear shift nationally and internationally12, 13, 14 to value research
output more broadly (e.g. including datasets and software) and more qualitatively, inclu-
ding societal impact. In line with these recent developments, we recommend that research
institutions develop appointment and promotion policies that recognise research software
as a primary research product. Research institutions should facilitate career opportunities
for researchers involved in research software engineering. In particular, we recommend
recognising and rewarding Research Software Engineers (rses) to thus stimulate the diffe-
rentiation of specialised and less-traditional academic career paths.

The Organisation for Economic Co-operation and Development (oecd) provides the
following statement on rses: ‘A growing number of people in academia combine exper-
tise in programming with an intricate understanding of research. These Research

Software Engineers may start as researchers who spend time developing software
or they may come from a more conventional software development background.

10] The Carpentries has
been active since 1998 and
focuses on foundational
coding and data science
skills. Their teaching materi-
als are openly available and
include basic topics such as
programming in Python and
version control with git.
11] The Turing Way is a
community-driven guide to
reproducible and collabo-
rative data science, initiated
and funded by the Alan
Turing Institute. It contains
extensive guidelines on
topics relating to software
sustainability as mentioned
in the interviews above,
such as licensing, version
control, testing, continuous
integration and reprodu-
cibility.

12] vsnu et al. ‘Room
for everyone’s talent:
towards a new balance in
the recognition and rewards
for academics’ https://www.
vsnu.nl/en_gb/Recogniti-
on-and-rewards-of-acade-
mics.html
13] San Francisco De-
claration on Research
Assessment: https://sfdora.
org/read/
14] vsnu, knaw, nwo
‘Strategy Evaluation Pro-
tocol 2021-2027’: https://
www.nwo.nl/evalua-
ties-nwo-instituten

11

https://software-carpentry.org/scf/history/
https://the-turing-way.netlify.app/welcome

Researchers should be encouraged to cite the software they use and to make the soft-
ware they develop citable. Software citation elevates software to the level of first-class
research output.15 Citing software helps to advance research and supports proper
attribution and credit (similar to that of papers and data).

Software citations and other relevant metrics (e.g. number of public releases, or the size
of the community of contributors) could be taken into account when evaluating research
and researchers.

Allocate funding
Sustainable research software comes at a cost. Time and effort are needed to develop
research software such that it can be reused by others, and the software may need to be
maintained and/or archived long after a project has finished. Currently, it is difficult to fund
such efforts, especially after projects end. One way forward is to explicitly address sustai-
nable software and sustainable software development in funding instruments. This can be
addressed through the creation of funding lines that specifically target the development
and maintenance of reusable software and long-term software archiving.

To make progress along these lines, more information is needed that sheds light on the
financial resources and available infrastructures for long-term archiving and the hosting
of sustainable software. On the national level, such information should be gathered by
researchers and institutions to clarify the financial needs for future research proposals
relating to research software sustainability and the benefits for academic research in
general.

15] Katz ds, Chue Hong
np, Clark T et al. Recogni-
zing the value of software:
a software citation guide
[version 2; peer review: 2
approved]. F1000Research
2021, 9:1257 (https://doi.
org/10.12688/f1000rese-
arch.26932.2)

12

Tables with recommendations
To start the discussion on what is needed to encourage sustainable software in practice,
we have drawn up recommendations for all stakeholders involved. The recommendations
are grouped under themes and there are suggestions for which steps stakeholders could
take in order to get results.

CREATE AWARE NE SS

National organisations in the digital research infrastructure (eScience Center, dans,
surf) should take on a more active and visible role in supporting research institutions
in their ambitions to develop relevant and high-quality support capacity within research
groups and in digital competence centres.

DEVELO P PO LI CI E S

13

institutions/
institute leaders

faculties /
research group leaders

researchers

Introduce programmes to
highlight stories of succes-

fully reused research
software to demonstrate

its advantages

Show your researchers
the advantages of reusing

software by using examples
of good practice

Stay informed about relevant
findings, developments and
recommendations from e.g.
fair Software, relevant rda
initiatives, resa and nl-rse

research funders institutions/
institute leaders

faculties /
research group leaders

researchers

Develop and imple-
ment research software
policies and guidelines,
including archiving and

licensing

Require software
developed within funded

projects to be as open
as possible, as closed

as necessary

Familiarise your faculty/
research group with

research software policies
and guidelines, including
archiving and licensing

Familiarise yourself
with research software
policies and guidelines,

including archiving
and licensing

STIMULATE CO NSI DE RE D RE USE OF SOFTWARE

PROVIDE TRAI NI NG & SU PPO RT

14

institutions/
institute leaders

faculties /
research group leaders

researchers

Facilitate paragraph on
software management
e.g. in the institutional

dmp-tool

Oraganise formal
registration of research

software (using pids) as a
scholarly output in research

information systems,
similar to the registration of

publications

Encourage researchers to consider
which part of their research software

will be suitable for reuse,
and which part needs to be

archived to ensure reproducibility
of published results

Encourage researchers to prefer
the use of existing and

stable software developed and
supported by others over

developing software from scratch

Increase visibility by enabling
software citation. Deposit

developed software on platforms
like GitHub or Gitlab.

Archive it on Zenodo or Figshare
for long-term preservation

and for obtaining a pid

Increase your research
efficiency by using

software already developed
by other researchers

institutions/
institute leaders

faculties /
research group leaders

researchers

Facilitate effective and efficient support
in the field of software development,

sustainability and licensing

Provide research software
engineering support

Include guidelines and training for
software development in the curriculum

Train your researchers in
good practices for the

development of
sustainable software

Hire research software
engineers as part of
the research team

Participate in training
courses on software

development

Make use of reseach
software engineering

expertise

ADJUST AC ADE MI C EVALUATI O N

ALLO CATE F U NDI NG

15

research funders institutions/
institute leaders

faculties /research
group leaders

Reward software development
capabilities in your evaluation

procedures, according to
the new Strategy Evaluation

Protocol (sep) guidelines

Acknowledge
research software
as a principal form

of academic output

Include software
citations and other

relevant metrics when
evaluating researchers

research funders institutions/
institute leaders

faculties / research
group leaders

researchers

Gather information
about the financial
needs and required
infrastructures for

long-term archiving
and the hosting of

sustainable software

Explicitly address sustainable software
and sustainable software development

in funding instruments (e.g. in
conditions and evaluation criteria)

Require a paragraph on financial
needs for software sustainability

Develop funding instruments for
covering the cost of software archiving

after the project has finished

Include the cost
of archiving software

after the research
has been completed

in your funding
proposals

Include the cost
of archiving software

after your research
has been completed

in your funding
proposals

Appendices

Appendix 1. Background of this report
This report started with a pitch from surf to the Advisory Board of lcrdm to investigate
software archiving. The pitch was approved in March 2020 and a task group put together
in May 2020. The task group comprises research support staff from several universities
and research institutions in the Netherlands and staff from surf, nwo and the Nether-
lands eScience Center. Based on the discussions among the group, the scope of the report
was broadened to software sustainability and reuse, rather than focusing just on software
archiving. In the context of software, archiving refers to storing source code without
alteration, while sustainability covers various aspects, such as reproducibility of results
(running the software to verify previous results) and reusability (using the software in a
different context to produce new results).

Pitch proposal:
 Which conditions encourage a researcher to archive research software?

1. Purpose and demarcation of the subject
Within the context of open science, researchers are asked by funders to provide them
with the data and keep the software that led to the results of the research for at least 10
years. The storage of research data is taking place more and more; the storage of research
software is still (very) scarce. Storing research software in a way that makes reusability
possible requires considerable effort from the researcher who made the software. Within
the current research process, there appears to be few incentives for these activities /
costs. However, archiving the research software used is more common within some re-
search areas. We want to investigate why this does take place within these research areas.

2. Why is this of cross-institutional interest?
Many institutions struggle with the issue of how they can stimulate the archiving of
research software. Archiving it is not widely used at the moment. Many institutions are
thinking about this issue, but the experience is not yet great. Precisely because this is a
relatively new issue, a joint approach to obtaining more information about the possibilities
for stimulating software archiving is useful.

3. Deliverables
We want to provide practical recommendations for institutions to stimulate the archiving
of research software among researchers. We want to base these recommendations on
researching best practices in the field of research software archiving within research areas
where this is already applied, at home and abroad. In doing so, we will focus on the follo-
wing questions for the researchers:
• �What do they see as the purpose (s) of archiving their research software?
• �Is extra effort required to proceed with archiving? If so, how much extra?

16

• �Do they feel appreciation for the software they have archived? If so, how? –
• �In their view, how could the archiving of research software be stimulated even more?

4. Necessary expertise and competences
The following expertise and competences are required in this task group:
• �research support employees who are or will be involved in issues related to archiving

research software
• �employees eScience Center and dans because of their extensive knowledge in the field

of software archiving
For this research contact will be sought with researchers / research software engineers
who are currently archiving their research software. It is therefore important that the
employees involved in this study have access to this group of researchers.

5. Estimated duration and schedule
The start date is May 26, with a lead time of 8–10 weeks. We will work with a 2-weekly
meeting of 2 hours, with discussions and elaborations by email in the meantime.

6. What has already been known or done and why does this information not suffice?
Research into the possible incentives for researchers to archive the developed software
has not been carried out a lot, because this is a relatively new area.

17

Appendix 2. Interview guideline

Research funders want to stimulate researchers to archive the software they created for
their research. This desire has the following background: the research carried out must be
reproducible; both the data and the software should be described and archived, so other
researchers are able to reuse the software to check the results. Research software that can
be used by other researchers can speed up research. Also, for this purpose, the software
needs to be stored (archived) somewhere accessible by others, and needs to be described.
At the moment, a lot of research software created, is not ready for the purpose of reuse
by other researchers. However, some researchers (research groups) already store/archive
their software for reuse. This is the group we target specifically with this questionnaire. We
want to find out what actions are taken to make the developed software reusable, what
researchers gain from writing reusable software and where they store (or archive) the
software. How do they make the software findable for others?

By research software we mean all the software code (including scripts, apps, models, tools,
algorithms etc.) that is being used to produce research results, but also software that is the
research result in itself.

Q 1. 	 Job title
Q 2. 	 Research area
Q 3. 	 You use the software for:
Q 4 	 What type of software do you generally use in your research?
	 • �Software developed by myself/my support group
	 • �Software developed by other researchers I know in my research area
	 • �Any software I can find on GitHub that fits my needs
	 • �Combinations of types mentioned above
	 • �Other
Q 5 	 The software you develop will be used by:
	 • �Yourself
	 • �Your research group
	 • �Other researchers in the field you work in
	 • �Anybody who wants to
Q 6. 	 When you develop research software:
	 • �You decide in advance whether to make it reusable for other researchers in

advance
	 • �You usually take the decision to make it reusable afterwards
	 • �It depends, sometimes you decide in advance, sometimes afterwards
	 • �Many times, you want to make it reusable, but you fail to succeed
Q 7. 	� Do you usually associate your research software with a license? What license

type(s) do you use?
Q 8. 	� Is the software you develop documented? Do you provide different types of

documentation? If so, please explain
Q 9. 	� Do you use version control when developing software? And do you release new

versions of your software after your research is completed?
Q 10. 	 Do you write tutorials for your software? If so, for whom do you write these?

18

Q 11. 	� Do you document the format of the input and output data(sets) for which your
software was developed? If so, how do you do that?

Q 12. 	 How do you manage the dependencies (e.g. packages, libraries) of your software?
Q 13. 	� What are the considerations for you to develop reusable research software?

Why do you do it, or not?
Q 14. 	� Do you use software developed by other researchers yourself?

If yes, can you describe for what purpose?
Q 15. 	� When you develop reusable software, what is your practice and approach?

Is this different from developing software you will not share? Please elaborate
Q 16. 	 Does it take extra effort to make the software reusable? If yes, please elaborate.
Q 17. 	� Do you archive your research software after you developed your code?

If yes, what tools do you use?
Q 18. 	� Do you experience difficulties in archiving your software?

If yes, can you elaborate?
Q 19. 	� When you archive reusable software, how do you make it findable for other

researchers?
Q 20. 	� Do you feel you gain personally from writing reusable research software?

If yes, please elaborate
Q 21. 	� Do you experience limiting factors when you develop reusable software?

If yes, please describe these
Q 22. 	� What kind of support would you like to receive from your institution in the area of

research software development and archiving? Please elaborate
Q 23. 	� Is there anything else you want to bring up on the subject of software reusability

and software archiving?

19

Appendix 3. A summary of the answers per question

Q 1. JOB TITLE

Professor | 3
Group leader | 2
Assistant professor | 5
PhD | 7
Post Doc | 2
Data scientist | 1
Software developer | 3
Scientific staff | 1
Researcher | 1
Advisor | 1
Unknown | 6

Q 2 . RE SEARCH AREA

Interviewees indicated to work in the following research areas:
Science: 9
Life Science: 14
Software development: 7
Humanities: 3
Other: 1
Combinations: 3

Q 3. YO U USE THE SOFTWARE FOR:

• �Create models, generate and analyse data
• �Develop software, and support the researchers in their group with development
• �Research on software itself
• �data processing, analysis and modelling
• �pipelining/workflow

Q 4. �WHAT TYPE OF SOFTWARE DO YOU GENERALLY USE
IN YOUR RESEARCH?

• �Software developed by myself/my support group | 4
• �Software developed by other researchers I know in my research area | 0
• �Any software I can find on GitHub that fits my needs | 0
• �Combinations of types mentioned above | 3

20

• �Other | 3
° �An important one. Programming experiments, data maintenance, and reproducible

handlings and visualization of complex data is crucial. Without software there would
be very little research.

° �main focus
° �no answer

Q 5. TH E SOFTWARE YOU DEVELOP WILL BE USED BY:

• �Anybody who wants to | 20
• ��Other researchers in the field you work in | 19
• ��Your research group | 25
• �Yourself | 18

Q 6. WHE N YOU DEVELOP RESEARCH SOFTWARE

• �You decide in advance whether to make it reusable for other researchers in advance | 1
• ��You usually take the decision to make it reusable afterwards | 5
• �It depends, sometimes you decide in advance, sometimes afterwards | 16
• �Many times you want to make it reusable, but you fail to succeed | 1

I always/often aim to make it reusable for other researchers | 1
I sometimes aim to make it reusable | 2
co mb inations:
• �You decide in advance whether to make it reusable for other researchers in advance +

It depends, sometimes you decide in advance, sometimes afterwards | 2
• ��You decide in advance whether to make it reusable for other researchers in advance +

Many times you want to make it reusable, but you fail to succeed | 1

no answer: 1
	

Q 7. �DO YOU USUALLY ASSOCIATE YOUR RESEARCH SOFTWARE
W ITH A LICENSE? WHAT LICENSE TYPE(S) DO YOU USE?

19 out of 32 researchers indicate to license their software. bsd is mentioned the most (6),
then gnu (L)gpl (4)x, Apache (3x), cc-by (4) (not relevant for software), mit (2), Eclipse
(1), eupl (1).
5 out of 32 researchers indicate to license their software occasionally.
1 researcher wants to do it but is still searching for the right license.
7 researchers indicate not to license their software.

21

Several interesting remarks were made:
– �Some researchers indicate that commercial parties consider the use of the gnu gpl

license as unwanted. A chance in that behaviour however is being detected; commercial
parties start to see the benefits of open source

– �One researcher struggles with the ownership of the software; technically the university
is the owner.

– �2 researchers indicate not to license their software because their software can be made
available on request

– �Two researchers mention not liking commercial parties making money off of their
software.

Q 8. �IS THE SOFTWARE YOU DEVELOP DOCUMENTED?
DO YOU PROVIDE DIFFERENT TYPES OF DOCUMENTATION?
IF S O, PLEASE EXPLAIN

Most researchers indicate to provide limited documentation. This type of documentation
consists of
– �inline information in the code (mentioned 8 times)
– �information in a wiki (mentioned 4 times)
– �information in a readme file (9 times)
3 Researchers provide documentation occasionally.
Extended documentation is provided by 6 researchers.

4 researchers mention the use of automatic generated documentation/ integrated
documentation. All major languages have this facility, for instance R has Roxygen.

The constraints in time and budget are mentioned as a reason for limited documentation.
Also, the limited need of documentation is mentioned, as the users of the software are
familiar with this type of software.

Q 9. �DO YOU USE VERSION CONTROL WHEN DEVELOPING
S O FT WARE? AND DO YOU RELEASE NEW VERSIONS OF
YOUR SOFTWARE AFTER YOUR RESEARCH IS COMPLETED?

25 out of 32 researchers apply version control on their software. This is research software
that is used for longer periods of time after the research is finished. Only 2 researchers
indicate not to apply version control after the research has finished.
3 researchers don’t apply version control, and 1 sometimes.

GitHub is widely used by the researchers for their software.

22

Q 10. �DO YOU WRITE TUTORIALS FOR YOUR SOFTWARE?
IF S O, FOR WHOM DO YOU WRITE THESE?

Tutorials are written by only 11 researchers. Lack of time is mentioned regularly. Also 11
researchers indicate never to write a tutorial, 5 researchers occasionally. 1 researcher
would like to but didn’t.

Some researchers indicate that the users that could make use of the system do not need a
tutorial.

Four researchers have made video instructions. Two mention teaching their software to others.

Q 11. �DO YOU DOCUMENT THE FORMAT OF THE INPUT AND OUTPUT
DATA(SETS) FOR WHICH YOUR SOFTWARE WAS DEVELOPED?
IF S O, HOW DO YOU DO THAT?

23 out of 31 researchers describe the input and output data. The description types used are:
– �Examples | 1
– �Elaborate description | 3
– �Readme files | 4
– �Inline in the code | 2
– �Use standard data | 3
– �Dummy file | 1

(not all researchers indicated the type of description)
5 out of 31 researchers do not add a description, 2
4 researchers did not answer the question or were not asked.

Q 12 . �HOW DO YOU MANAGE THE SOFTWARE DEPENDENCIES
(E .G. PACKAGES, LIBRARIES) OF YOUR SOFTWARE?

29 answers
This question triggered a lot of researchers with an extensive answer. It is obvious that this
is a difficult area, with lots of challenges. Researchers have different ways of coping with
this problem:
– �The use of standard libraries
– �The use of containers (Dockers)
– �Active maintenance
– �Description of the used libraries and packages
– �The use of built-in methods for dependency management in the software tools (for

example in Python)
– �Minimalize the dependencies
– �The use of old computer equipment

23

One researcher indicates to expect the problem to grow in the coming years, because of
the use of cloud technology. He/she sees problems occur as soon as 3 months after the
last update.
Also, interesting to mention is the practice of ci/cd (continuous integration, continuous
deployment), which spots dependency issues as soon as possible. Specifically mentioned
is the tool Travisci.

Q 13. �WHAT ARE THE CONSIDERATIONS FOR YOU TO DEVELOP
RE- USABLE RESEARCH SOFTWARE?
WHY DO YOU DO IT, OR NOT?

A wide variety of considerations were mentioned. Many researchers indicate not one
reason, but 2. These were the considerations mentioned:
– �Ideological motivations, like passing on knowledge and contributing to society
– �Use of open source software written by others
– �Re-use of the software by the own research group
– �To help other researchers
– �Cooperation with other researchers; goodwill
– �Tracking mistakes in the software
– �Open research (verification)
– �Internal policies
– �Funding requirements
– �Enabling testing of automated analyses

Q 14. �DO YOU USE SOFTWARE DEVELOPED BY OTHER RESEARCHERS
YOURSELF?
IF YES, CAN YOU DESCRIBE FOR WHAT PURPOSE?

27 researchers out of 29 use software developed by others themselves
Only 1 researcher does not use software developed by other him/herself
1 researcher does it occasionally

Re-use is:
– �To save time
– �Not reinventing the wheel
– �Standard software that is being used in the area of research
– �Cooperation with other researchers
– �building on top of other research already been done
– �use expertise from others, that is less available

24

Q 15 . �WHEN YOU DEVELOP REUSABLE SOFTWARE, WHAT IS YOUR
PRACTICE AND APPROACH? IS THIS DIFFERENT FROM
DEVELOPING SOFTWARE YOU WILL NOT SHARE?
PLEASE ELABORATE

15 researchers say it takes a certain amount of effort to make the software available to
other researchers; they refer to better documentation, different development standards,
more comments.

11 researchers say it does not take too much effort. Some say, they always develop with re-
usage in the back of their minds, which explains why they don’t need to make any extra effort.
Or they create a bit of extra documentation. For some, the research area requires open soft-
ware.

For 4 researchers, making the software reusable takes a huge effort.

Q 16. �DOES IT TAKE EXTRA EFFORT TO MAKE THE
S O FTWARE REUSABLE? IF YES, PLEASE ELABORATE.

20 researchers feel that making research software reusable takes a lot of time. Extra
documentation, testing, extra description of the functions, structure of the code,
dependency checks.

5 researchers say it takes a little bit of extra time.

4 researchers say it does not take much time or none, to create reusable software.
2 researchers claim it takes a bit of time in advance, but that evens out in the long run,
because of the time benefits later.

2 researchers did not answer the question.

Q 17. �DO YOU ARCHIVE YOUR RESEARCH SOFTWARE AFTER YOU
DEVELOPED YOUR CODE? IF YES, WHAT TOOLS DO YOU USE?

23 out of 29 researchers say they archive the code. Most of them use GitHub/Gitlab, a lot of
them in combination with Zenodo. Some other archiving tools are mentioned only once:
4tu, Figshare, institute repository, cran, Bitbucket.

4 researchers say not to archive their software.
1 researcher saves all software to his own, personal archive.

For 1 researcher this question was n/a.

GitHub is widely used. The only problem with GitHub is the fact that all software on GitHub
must be open. If research is conducted for commercial industries, GitHub cannot be used.

25

tue and cwi have installed Gitlab for that purpose. Other institutes have their own re-
positories in place. For cooperation with students, Bitbucket was suggested. The connec-
tion GitHub – Zenodo is highly recommended. Figshare is mentioned only once and was
indicated as not very user friendly.

Remark: GitHub cannot be used for archiving, as GitHub is a commercial platform and
gives no guarantees for long term storage in case they cease to operate. GitHub is very
useful for making the software findable and accessible.

Q 18. �DO YOU EXPERIENCE DIFFICULTIES IN ARCHIVING
YOUR SOFTWARE? IF YES, CAN YOU ELABORATE?

17 researchers do not experience too many difficulties. Some feel Zenodo is a good tool
for this and getting to know the tool takes a little time.

4 researchers say this does not apply to them (yet).
1 researcher makes a specific comment, that archiving tools that consist of multiple
modules in separate repositories is hard

Another researcher indicates that Gitlab is not yet recognized by all students or
researchers. They download the software and create their own versions on their own
laptops. Integrating these versions afterwards with Gitlab is impossible.

Q 19. �WHEN YOU ARCHIVE REUSABLE SOFTWARE, HOW DO
YOU MAKE IT FINDABLE FOR OTHER RESEARCHERS?

28 researchers indicate to take actions to make their software findable. The means
they use are:
– �GitHub. GitHub is indexed by Google (mentioned 13 times)
– �doi on Zenodo
– �refer to the code in the publication
– �a self-made wiki page or a website for a project
– �twitter and other social media
– �cran
– �Software mentioned on specific fora on the internet
– �Project-based mailing lists
– �Personal interaction with other researchers
Only 1 researcher indicates not to take any action. 1 researcher did not answer this
question, another one mentioned it to be not applicable.

26

Q 20. �DO YOU FEEL YOU GAIN PERSONALLY FROM
WRITING REUSABLE RESEARCH SOFTWARE?
IF YES, PLEASE ELABORATE

4 researchers indicate not to gain from writing reusable research software. One of them
even states that it is a disadvantage, as he is not judged on open software, only on papers
and education. And open software takes time.

17 researchers feel it benefits them. Reusable software benefits them in:
– �Reputation/recognition/exposure
– �Collaboration
– �Goodwill
– �Reproducibility of research results
– �Time saving
– �Testing
– �Increase of citations

7 people indicated to have limited expectations on their personal gains. It takes them time
and effort, but they expect not much in return, for instance because their field does not
value sharing as much as other fields
2 researchers mentioned that writing reusable software was ingrained in the work they do.
They have no other option.
For 1 respondent the question was not applicable.

 Q 21. �DO YOU EXPERIENCE LIMITING FACTORS WHEN YOU DEVELOP
RE USABLE SOFTWARE? IF YES, PLEASE DESCRIBE THESE

Generally, time and effort required for writing reusable software are mentioned. In
research, time is always a limiting factor. Anything that adds to that, is a problem.

Also mentioned as limiting factors are:
– �A conservative approach of the institute or co-researchers, or the need to convince

these other researchers of the usefulness
– �Licenses
– �Users not used to work with software
– �Requirements of the institutes for working with specific programming languages
– �Different compute environments
Not enough academic recognition

2 researchers do not experience any limiting factors. For 1 researcher the question was
not applicable.

27

Q 22 . �WHAT KIND OF SUPPORT WOULD YOU LIKE TO RECEIVE FROM
YOUR INSTITUTION IN THE AREA OF RESEARCH SOFTWARE
DEVELOPMENT AND ARCHIVING? PLEASE ELABORATE

A lot of different things are mentioned here, but 2 things stand out:
– �Training/education for students and staff in programming of reusable software
– �Help in licensing

OTHER ASPECTS MENTIONED WERE:

On infrastructural components:
– �Availability and information on repositories
– �More infrastructural components that suit research, for development and archiving,

including the long term finance of these environments
– �Test environments
– �Integrated gui based software for support on version control and archiving

On policies and documents:
– �Policies on software development
– �Support on creating paragraphs on archiving and reusable software design in project

plans
– �Guidelines for description of dependencies
– �Easily accessible information on aspects of reusable software, guidelines, expertise

and tools

Other supporting aspects:
– �Information on who wrote what software in the university
– �Collection and analysis of bibliometric data, based on nwo specifications
– �Long term support for good software
– �Help in documentation of software
– �More scientific programmers
– �Long term finance

And last, but not least, upgrade the appreciation for software development in general.

Q 23. �IS THERE ANYTHING ELSE YOU WANT TO BRING UP
ON THE SUBJECT OF SOFTWARE REUSABILITY AND
S O FTWARE ARCHIVING?

Different topics came up. Things to look for, things to rethink and some questions or
wise remarks.

28

Things to look for:
– �Education on data management/software management
– �Support needed for archiving software
– �Educate in documentation of software
– �We need mechanisms for quality control
– �Besides clinical data, take other data into consideration as well
– �Sharing software code is scary; a mentality change is needed
– �We need a new culture of sharing
– �Computer scientist should be evaluated on software, rather than on papers
– �Citations of software are not used wide enough
– �Teach people how to write software
– �Create more awareness
– �Publish research software
– �We could learn practices from software development companies, like elements

of ‘extreme programming’

Things to rethink:
– �There is now a lot of pseudo-openness: where researchers throw everything on GitHub,

without it being really reusable
– �The increasing complexity of dependencies (because there is a lot of re-usable software)

will become a problem in the future.
– �We are approaching a bottleneck where development of new hardware becomes

difficult due to the complex software ecosystem, but on the other hand we cannot
continue with new software because no new hardware will be available.

– �Reuse of software saves * no * time and is not a smart thing to do. It creates more
dependencies than necessary which can be a big problem

– �If people use software from another person, there is the risk of not completely
understanding that software, which can create mistakes

– �We shouldn’t get tied to single for-profit companies; we don’t want our data held
hostage

– �For recognition purposes we could track in which other projects your code is used,
through ‘reverse depends and reverse imports’. R has this function; GitHub is starting to
do that too.

Questions and wise remarks:
– �The software is only as good as the repositories that still exist
– �Software can be perfectly re-usable but never archived and vice versa
– �The words: “Legacy software” are often used in a negative sense, but it is positive. Rule of

thumb: the older the program, the longer it will be useful.
– �Not all reusable software is forever; start small
– �Can or will the library support software archiving?
– �Software is underrated in academics
– �It’s only science if you write it down. Otherwise, you’re just messing around
– �When reviewing, always ask for the archived code. That helps establish a new culture
– �It is problematic, even immoral, to be dependent on (expensive) software as a research

institution

29

30

Colophon

zenodo: 10.5281/zenodo.4543569

authors and contributors
		
Tom Bakker | 0000-0002-6465-5589	
Maria Cruz | 0000-0001-9111-182X	
Saskia van Eeuwijk | 0000-0002-1322-7429 | initiator task group
Vera Sarkol | 0000-0002-8950-3178	
Barbara Vreede | 0000-0002-5023-4601
	
Bart Aben | 0000-0002-7918-1590	
Patrick Aerts		
Gerard Coen | 0000-0001-9915-9721	
Bob van Dijk | 0000-0002-2129-7013	
Peter Hinrich | member consultative group
Lena Karvovskaya | 0000-0001-7777-5603	
Meta Keijzer		
Jacko Koster | 0000-0003-1079-4927	
Jason Maassen | 0000-0002-8172-4865	
Miriam Roelofs | chair task group
Jan Rijnders | 0000-0002-9397-1302	
Alfons Schroten		
Laurents Sesink | 0000-0001-7880-5413 | liasion Advisory Group lcrdm
Chris van der Togt | 0000-0002-7373-4625	
Jurgen Vinju | 0000-0002-2686-7409		
Petra de Willigen			

des ign | Nina Noordzij, Collage, Grou

copyright
all content published can be shared, giving appropriate credit
creativecommons.org/licenses/by/4.0

lcrdm

lcrdm supported by

https://creativecommons.org/licenses/by/4.0/

