

Research and Documentation Centre

On personal data minimization & algorithmic fairness

Mortaza S. Bargh

Workshop at Surfnet, 1 June 2023, afternoon session

Wetenschappelijk onderzoeks- en kennisinstituut voor het ministerie van Justitie en Veiligheid

Introduction

What is responsible ML (responsible AI)

Important issues/concerns of AI/ML according to [CHO20]

- Security concerns
- Explainability (and interpretability) concerns
- Fairness concerns

Algorithmic fairness

Taxonomy of algorithmic fairness concepts

Formal fairness: Statistical measures

Formal and mathematical concepts

Data driven smart systems

From Section 3 of [STA21] See also [VER18]

(a) Statistical measures

Statistical measures are based on different calibrations of predicted probabilities, predicted outcomes, and actual outcomes

Outline:

- Classical metrics (12 measures)
- Fairness ones (13 measures)

- Statistical parity = group fairness = equal acceptance rate = benchmarking
- Conditional statistical parity
- Predictive parity = outcome test
- False positive rate balance = predictive equality
- False negative rate balance = equal opportunity
- Equalized odds = conditional procedure accuracy = disparate mistreatment
- Conditional use accuracy
- Overall accuracy equality
- Treatment equality
- Test fairness = calibration = matching conditional frequencies
- Well calibration
- Balance for positive class
- Balance for negative class

Example metrics

Classical statistical metrics	Related fairness metrics
Positive Predictive Value (PPV) or precision or correct acceptance	Predictive parity or outcome test $Pr(Y = u \hat{Y} = u Y$

$$Pr(Y = y | \hat{Y} = y) = \frac{TP}{TP + FP}$$

$$Pr(Y = y | \hat{Y} = y, S = s) = Pr(Y = y | \hat{Y} = y, S = \neg s)$$

Predictive parity or outcome test

- Both protected and unprotected groups have equal PPV the probability of a subject with positive predictive value to truly belong to the positive class
- Example: Both male and female applicants with a good predicted credit score having actually a good credit score

 Y_{rw} X_{rw} Unobservable real-world factors

Data driven smart systems

Applying together with k-anonymity

Data driven (or AI) applications

Data driven (or AI) applications

Example of a microdata set

A data set collected at a hospital

name	job	sex	age	disease	height (cm)
Bob	dancer	male	35	hepatitis	184
Fred	writer	ter male 38 H		HIV	180
Doug	dancer	male	38	Flu	210
Alice	engineer	female	30	Flu	172
Cathy	engineer	female	33	HIV	170
Emily	physician	female	31	HIV	169
Gladys	lawyer	female	31	HIV	171

Microdata protection: De-identification

Example	Explicit Identifier EID					
	name	job	sex	age	disease	height (cm)
	Bob	dancer	male	35	hepatitis	184
	Fred	writer	male	38	HIV	180
	Doug	dancer	male	38	Flu	210
	Alice	engineer	female	30	Flu	172
	Cathy	engineer	female	33	HIV	170
	Emily	physician	female	31	HIV	169
	Gladys	lawyer	female	31	HIV	171

Microdata protection: De-identification

Example: Here via removal (other methods: suppression and replacement with pseudo-IDs)

name	job	sex	age	disease	height (cm)
	dancer	male	35	hepatitis	184
	writer	male	38	HIV	180
	dancer	male	38	Flu	210
	engineer	female	30	Flu	172
	engineer	female	33	HIV	170
	physician	female	31	HIV	169
	lawyer	female	31	HIV	171

Example		I	Quasi dentifiers QIDs			
	name	job	sex	age	disease	height (cm)
		dancer	male	35	hepatitis	184
		writer	male	38	HIV	180
		dancer	male	38	Flu	210
		engineer	female	30	Flu	172
		engineer	female	33	HIV	170
		physician	female	31	HIV	169
		lawyer	female	31	HIV	171

Traditionally some of them are protected through blindness

Methods for protecting QIDs

Generalization

- To replace some values with a parent value in the taxonomy of an attribute
- Example: Age: $34 \rightarrow [30, 40)$

Suppression

- To replace the values of QIDs with a meaningless character
- Age: 34 → ***

Example

name	job	sex	age	disease	height (cm)
	dancer	male	35	hepatitis	184
	writer	male	38	HIV	180
	dancer	male	38	Flu	210
	engineer	female	30	Flu	172
	engineer	female	33	HIV	170
	physician	female	31	HIV	169
	lawyer	female	31	HIV	171

Example

name	job	sex	age	disease	height (cm)
	artist	male	35-39	hepatitis	184
	artist	male	35-39	HIV	180
	artist	male	35-39	Flu	210
	engineer	female	30	Flu	172
	engineer	female	33	HIV	170
	physician	female	31	HIV	169
	lawyer	female	31	HIV	171

Example

name	job	sex	age	disease	height (cm)
	artist	male	35-39	hepatitis	184
	artist	male	35-39	HIV	180
	artist	male	35-39	Flu	210
	lawyer	female	30	Flu	172
	engineer	female	33	HIV	170
	engineer	female	31	HIV	169
	physician	female	31	HIV	171

Example		k-a app	lied to QID	S		
	name	job	sex	age	disease	height (cm)
		artist	male	35-39	hepatitis	184
k=3		artist	male	35-39	HIV	180
		artist	male	35-39	Flu	210
ſ		profess.	female	30-34	Flu	172
k=4		profess.	female	30-34	HIV	170
Group 2		profess.	female	30-34	HIV	169
		profess.	female	30-34	HIV	171

k= min (3, 4) = 3 For this data set

[0 1 0 1 0 1] Bank 9 in category utility

Another approach for integrating generalization with fairness

See: Hajian, S., Domingo-Ferrer, J., Farràs, O. (2014). **Generalization-based** privacy preservation and discrimination prevention in data publishing and mining. In Data Mining and Knowledge Discovery, 28(5–6), 1158–1188.

Increases the QID attribute set (also includes the discrimination sensitive attributes)

Causes extra data utility degradation if both (fairness protection and privacy protection) are considered

Topics addressed today

Mentioned a new trend: Algorithmic fairness becomes important

Showed a way integration with personal data minimization (anonymization)

Explained another approach by giving a pointer (NB: extra data utility degradation)

[ALT'18] Altman, M., Wood, A., & Vayena, E. (2018). A harm-reduction framework for algorithmic fairness. IEEE Security & Privacy, 16(3), 34-45.

[BAY'20] Baylon, C., Berghoff, C., Brunessaux, S., Burdalo, L., Dacquisto, G., Damiani, E., Herpig, S., Louveaux, C., Mistiaen, J., Nguyen, D.C., Polemi, N., Praca, I., Sharkov, G., Slieker, V., Szczekocka, E., Orange Polska SA (15 Dec 2020). Artificial Intelligence Cybersecurity Challenges: Threat Landscape for Artificial Intelligence. Technical report. , The European Union Agency for Cybersecurity (ENISA), https://www.enisa.europa.eu/publications/artificialintelligence-cybersecurity-challenges .

[BIN'18] Binns, R. (2018). What can political philosophy teach us about algorithmic fairness?. IEEE Security & Privacy, 16(3), 73-80.

[CHO'20] Choraś, M., Pawlicki, M., Puchalski, D., & Kozik, R. (2020, June). Machine learningthe results are not the only thing that matters! what about security, explainability and fairness?. In International Conference on Computational Science (pp. 615-628). Springer, Cham. 48

Algorithmic fairness references

[CHO'16] Chouldechova, A. (2016). Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments. Proc. Conf. Fairness, Accountability, and Transparency in Machine Learning (FAT ML 16), Oct.; https://arxiv.org/abs/1610.07524.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness Through Awareness. Proceedings of the 3rd Innovations in Theoretical Computer Science, 214–226. <u>https://doi.org/10.1145/2090236.2090255</u>

Gajane, P., & Pechenizkiy, M. (2017). On Formalizing Fairness in Prediction with Machine Learning. ArXiv. <u>http://arxiv.org/abs/1710.03184</u>

[HOL17] Holzinger, A., Biemann, C., Pattichis, C. S., & Kell, D. B. (2017). What do we need to build explainable AI systems for the medical domain?. arXiv preprint arXiv:1712.09923.

[KIL17] N. Kilbertus, M. Rojas-Carulla, G. Parascandolo, M. Hardt, D. Janzing, and B. Schölkopf. 2017. Avoiding Discrimination Through Causal Reasoning. In Ad- vances in Neural Information Processing Systems

[KUS17] Kusner, M. J., Loftus, J., Russell, C., & Silva, R. (2017). Counterfactual fairness. Advances in neural information processing systems, 30.

[MON18] Montavon, G., Samek, W., & Müller, K. R. (2018). Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 73, 1-15

[NAB18] R. Nabi and I. Shpitser. 2018. Fair Inference On Outcomes. In the 32de Association for the Advancement of Artificial Intelligence (AAAI) conference.

[RAM18] Ramnarayan, G. (2018). Equalizing Financial Impact in Supervised Learning. arXiv preprint arXiv:1806.09211

[SEL'18] Selbst, A. D., & Barocas, S. (2018). The intuitive appeal of explainable machines. Fordham L. Rev., 87, 1085.

[STA21] Starke, C., Baleis, J., Keller, B., & Marcinkowski, F. (2021). Fairness perceptions of algorithmic decision-making: A systematic review of the empirical literature. arXiv preprint arXiv:2103.12016.

[VEL'17] Veltheer, M. (2017). Using or Being Used by Algorithms – The Ethical Concerns to be Aware Of, Master Thesis MBA Big Data & Business Analytics, University of Amsterdam.

[VER18] Verma, S., & Rubin, J. (2018). Fairness Definitions Explained. Proceedings of the ACM/IEEE International Workshop on Software Fairness, 1–7. https://doi.org/10.1145/3194770.3194776

[VER20] Verma, S., Dickerson, J., & Hines, K. (2020). Counterfactual explanations for machine learning: A review. arXiv preprint arXiv:2010.10596

[VER21] Verma, S., Dickerson, J., & Hines, K. (2021). Counterfactual explanations for machine learning: Challenges revisited. arXiv preprint arXiv:2106.07756.

Žliobaitė, I. (2017). Measuring discrimination in algorithmic decision making. Data Mining and Knowledge Discovery, 31(4), 1060–1089. <u>https://doi.org/10.1007/s10618-017-0506-1</u>