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Introduction
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Important issues/concerns of AI/ML according to [CHO20]
• Security concerns
• Explainability (and interpretability) concerns
• Fairness concerns 

What is responsible ML (responsible AI)
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Algorithmic fairness
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I – Philosophical and social-science 
concepts

Based on egalitarianism

Based on organizational justice

...

II – Formal (mathematical) 
definitions

Statistical measures

Similarity-based 
measures

Causal reasoning

Preference-based 
measures

Taxonomy of algorithmic fairness concepts
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From Section 3 of [STA21]



Formal and mathematical concepts

Formal fairness:
Statistical measures 
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Data driven smart systems
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Data-driven smart system

Model: ℳ

Model 
interpretation

Real-world 
operation/interaction

Action( ෠𝑌, context)

Input data: 𝑋

Observation: 𝑋, 𝑌

Model 
extraction

Outcome: ෠𝑌Data
collection

Training data: 𝑿, 𝒀
(previous data points)  

Human & organizational 
intelligence

Outcome 
interpretation

Context



Basic element 
(classification)

𝑋 = 𝑥

𝑌 = 𝑦 or ¬𝑦

𝑌 = 𝑦 (with 𝑝 %)

𝑌 = ¬𝑦 (with 1 − 𝑝 %)

෠𝑌 = 𝑦 (with 𝑞 %)

෠𝑌 = ¬𝑦 (with 1 − 𝑞 %)

TP

TN

FN

FP

෠𝑌 = 𝑦 or ¬𝑦



Statistical measures are based on different calibrations of predicted probabilities, predicted 
outcomes, and actual outcomes

Outline:
• Classical metrics (12 measures)

• Fairness ones (13 measures)

(a) Statistical measures
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From Section 3 of [STA21]
See also [VER18]

• Statistical parity = group fairness = equal 
acceptance rate = benchmarking 

• Conditional statistical parity
• Predictive parity = outcome test
• False positive rate balance = predictive equality 
• False negative rate balance = equal opportunity
• Equalized odds = conditional procedure accuracy = 

disparate mistreatment
• Conditional use accuracy
• Overall accuracy equality 
• Treatment equality
• Test fairness = calibration = matching conditional 

frequencies
• Well calibration
• Balance for positive class
• Balance for negative class



Classical statistical metrics Related fairness metrics

Positive Predictive Value (PPV) 
or precision or correct acceptance

𝑃𝑟 𝑌 = 𝑦 ෠𝑌 = 𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Predictive parity or outcome test

𝑃𝑟 𝑌 = 𝑦 ෠𝑌 = 𝑦, 𝑆 = 𝑠 = 𝑃𝑟 𝑌 = 𝑦 ෠𝑌 = 𝑦, 𝑆 = ¬𝑠

Example metrics
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Basic element 
(classification)

𝑆 = 𝑠 or 𝑆 = ¬s

𝑌 = 𝑦 or ¬𝑦 ෠𝑌 = 𝑦 or ¬𝑦



• Both protected and unprotected groups have equal PPV – the probability of a subject with 
positive predictive value to truly belong to the positive class 

• Example: Both male and female applicants with a good predicted credit score having 
actually a good credit score

Predictive parity or outcome test 
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Blue area height: P(Y = 𝑦)

Given ෠𝑌 = 𝑦

White area height: P(Y = ¬𝑦 )

S=s S= ¬s

Given ෠𝑌 = 𝑦

S=s S= ¬s

Given ෠𝑌 = 𝑦



Operation:
-Pre-operation
- In-operation
-Post-operation

In-processing and post-processing (data science)

Model training

Pre-processing 
(data engineering)

Model ℳ

Model 
interpretation

𝑋𝑜

Model 
extraction

Data
collection

Training 
data

Unobservable real-world factors𝑋𝑟𝑤𝑌𝑟𝑤

Model 
testing

𝑌𝑜

𝑌𝑜

𝑋𝑜

Extracted 
model ℳ0

Test 
data

෠𝑌𝑜

Outcome ෨𝑌 Outcome 
interpretation

Context

ത𝑌 = Action( ෨𝑌, context)

ധ𝑌 = Impact(ത𝑌, interactions)

Input data 𝑋𝑜

𝑌𝑜

𝑋𝑜



Data driven smart systems
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Pre-
processing

In-processing Post-
processing

Operation

Model ℳ
Input data: 𝑋

Mitigation

Outcome ෠𝑌

Detection

Training data: 𝑿, 𝒀
Action( ෠𝑌, context)

Stages of the data-driven smart system

Stage(s) of human & 
organizational 
intelligence

Mitigation

Detection

Mitigation

Detection

Mitigation

Detection



Applying together 
with k-anonymity
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Data driven (or AI) applications
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Data 
collection 

Model 
extraction

Model Model 
interpretation

Real world 
phenomena

Action

Data

Observation



Data driven (or AI) applications
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Data 
collection 

Model 
extraction

Model Model 
interpretation

Real world 
phenomena

Action

Data

Observation

Data 
preprocessing

Raw data
• Structured data (microdata)
• Textual data
• Multimedia data



A data set collected at a hospital 

Example of a microdata set

21-04-2022 Science Works 20

name job sex age disease height (cm) 

Bob dancer male 35 hepatitis 184

Fred writer male 38 HIV 180

Doug dancer male 38 Flu 210

Alice engineer female 30 Flu 172

Cathy engineer female 33 HIV 170

Emily physician female 31 HIV 169

Gladys lawyer female 31 HIV 171



Example

Microdata protection: De-identification

21-04-2022 Science Works 24

name job sex age disease height (cm) 

Bob dancer male 35 hepatitis 184

Fred writer male 38 HIV 180

Doug dancer male 38 Flu 210

Alice engineer female 30 Flu 172

Cathy engineer female 33 HIV 170

Emily physician female 31 HIV 169

Gladys lawyer female 31 HIV 171

Explicit 
Identifier

EID



Example: Here via removal (other methods: suppression and replacement with pseudo-IDs)

Microdata protection: De-identification
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name job sex age disease height (cm) 

dancer male 35 hepatitis 184

writer male 38 HIV 180

dancer male 38 Flu 210

engineer female 30 Flu 172

engineer female 33 HIV 170

physician female 31 HIV 169

lawyer female 31 HIV 171



Example

Microdata protection: Applying SDC

21-04-2022 Science Works 27

name job sex age disease height (cm) 

dancer male 35 hepatitis 184

writer male 38 HIV 180

dancer male 38 Flu 210

engineer female 30 Flu 172

engineer female 33 HIV 170

physician female 31 HIV 169

lawyer female 31 HIV 171

Traditionally some of them are 
protected through blindness

Quasi
Identifiers

QIDs



Generalization 
• To replace some values with a parent value in the taxonomy of an attribute
• Example: Age: 34 → [30, 40) 

Suppression 
• To replace the values of QIDs with a meaningless character 
• Age: 34 → ***

Methods for protecting QIDs
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Example

Microdata protection: Applying SDC
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name job sex age disease height (cm) 

dancer male 35 hepatitis 184

writer male 38 HIV 180

dancer male 38 Flu 210

engineer female 30 Flu 172

engineer female 33 HIV 170

physician female 31 HIV 169

lawyer female 31 HIV 171



Example

Microdata protection: Applying SDC
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name job sex age disease height (cm) 

artist male 35-39 hepatitis 184

artist male 35-39 HIV 180

artist male 35-39 Flu 210

engineer female 30 Flu 172

engineer female 33 HIV 170

physician female 31 HIV 169

lawyer female 31 HIV 171



Example

Microdata protection: Applying SDC

21-04-2022 Science Works 31

name job sex age disease height (cm) 

artist male 35-39 hepatitis 184

artist male 35-39 HIV 180

artist male 35-39 Flu 210

lawyer female 30 Flu 172

engineer female 33 HIV 170

engineer female 31 HIV 169

physician female 31 HIV 171



Example

Microdata protection: Applying SDC

21-04-2022 Science Works 33

name job sex age disease height (cm) 

artist male 35-39 hepatitis 184

artist male 35-39 HIV 180

artist male 35-39 Flu 210

profess. female 30-34 Flu 172

profess. female 30-34 HIV 170

profess. female 30-34 HIV 169

profess. female 30-34 HIV 171

k-anonymity
applied to QIDs 

k=3
Group 1

k=4
Group 2

k= min (3, 4) = 3
For this data set
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See: Hajian, S., Domingo-Ferrer, J., Farràs, O. (2014). Generalization-based privacy 
preservation and discrimination prevention in data publishing and mining. In Data Mining and 
Knowledge Discovery, 28(5–6), 1158–1188.

Increases the QID attribute set (also includes the discrimination sensitive attributes)

Causes extra data utility degradation if both (fairness protection and privacy protection) are 
considered

Another approach for integrating 
generalization with fairness

44



Takeaways
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Mentioned a new trend: Algorithmic fairness becomes important

Showed a way integration with personal data minimization (anonymization)

Explained another approach by giving a pointer (NB: extra data utility degradation) 

Topics addressed today
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